Finite Difference Analysis of MHD Laminar Mixed Convection With Vertical Channel in Downflow

D. Venkata Rami Reddy¹, M. Rama Chandra Reddy² and B. Rama Bhupal Reddy³

¹Lecturer in Mathematics, Government Polytechnic College, Ananthapur
²Reader in Mathematics, S. K. S. C. Degree College, Proddatur
³Associate Professor in Mathematics, K. S. R. M. College of Engineering, Kadapa-516 003, A.P. - India

ABSTRACT
In this paper, finite difference analysis of MHD laminar mixed convection in vertical channel is studied. The distance between the plates is ‘b’ and g is the gravitational force. The buoyancy effect is taken into account according to the Boussinesq approximation. The flow problem is described by means of parabolic equations and the solutions are obtained by the use of an implicit finite difference technique coupled with a marching procedure. The velocity, the temperature and the pressure profiles are shown in graphs and their behaviour is discussed for different values of magnetic parameter M, buoyancy parameter Gr/Re and Prandtl number Pr.

Keywords: Mixed Convection, Vertical Channel, MHD

1. INTRODUCTION
Different orientation are heating conditions of the channel can induce different kinds of heated buoyant flows which enhance the heat transfer in different manners. For asymmetric heated channel, when the buoyancy parameter is not large, this small amount of the buoyant flow induced along the heated wall can either assist or oppose the main flow and cause either enhancement or reduction in the heat transfer. When the buoyancy parameter becomes large, the buoyant flow along the side wall become substantial. Depending upon the flow direction of the main stream, the buoyancy flow can cause different kinds of flow reversals which will alter the entire flow characteristic and enhance the heat transfer in different manners.

The laminar mixed convection in vertical or inclined ducts has been widely studied in the literature. Indeed, this research area has several technical applications, such as heat exchangers, cooling systems for electronic devices, solar collectors. Interesting results of the researches on this topic are collected in Refs. [1, 17]. Early exact solutions for the differential equations describing mixed convection in vertical channels and pipes were given by Ostrach [16] and Morton [14]. Ostrach [16] used a linearly changing wall temperature profile for vertical flow. He found instability and flow inversion for heating from below. Morton [14] predicted parallel flow for small Ra numbers in downward heated flow. He predicted that the flow would become unsteady and turbulent when the Raleigh number Ra reached 33. Quientiere [17] presented approximate analytical solutions for mixed convection between parallel plates. He related the heat transfer results to the inlet pressure defect and flowrate.

Yao [22] studied mixed convection by the use of stability analyses. Extensive work has been done to solve the flow field equation for mixed convection flows by numerical methods. The level of details of the results of these studies is highly dependent on the computing resources used. In the 1960s and 1970s general results were found for heat transfer effects for mixed convection flows by Lawrence [13], and Zeldin and Schmidt [23]. Beginning in the 1980s, numerical studies started being able to better resolve the velocity profiles of vertical pipe flows with mixed convection as shown in studies by Ingham [11], Aung [2], Cebeci [5], and Hebchi and Acharya [10]. Recent numerical studies by Evans [8] and Chang [7] have focused on the oscillatory flow reversal behavior that can occur in mixed convection flows.

* E-mail: reddybrb@gmail.com

2. NOMENCLATURE

- \(b \) Distance between the parallel plates
- \(C_p \) Specific heat of the fluid
- \(g \) Gravitational body force per unit mass (acceleration)
- \(Gr \) Grashoff number, \(gb (T_1 - T_0) b^3/\nu^2 \)
- \(H_o \) Applied Magnetic Field
- \(\vec{J} \) Current Density vector
- \(k \) Thermal conductivity of fluid
- \(M \) Magnetic Parameter
- \(p \) Local pressure at any cross section of the vertical channel
- \(p_0 \) Hydrostatic pressure
- \(P \) Dimensionless pressure inside the channel at any cross section, \((p - p_0) / \rho u_0^2 \)
- \(Pr \) Prandtl Number, \(m C_p / k \)
- \(\vec{q} \) Velocity Vector
- \(q'' \) Constant heat flux
- \(Re \) Reynolds number, \((b u_0)/\nu \)
- \(T \) Dimensional temperature at any point in the channel
- \(T_w \) Ambient of fluid inlet temperature
- \(T_{w1}, T_{w2} \) Isothermal temperatures of circular heated wall
- \(T_1, T_2 \) Isothermal temperatures of plate 1 and plate 2 of parallel plates
- \(u \) Axial velocity component
- \(\bar{u} \) Average axial velocity
- \(u_0 \) Uniform entrance axial velocity
- \(U \) Dimensionless axial velocity at any point, \(u/u_0 \)
- \(\nu \) Transverse velocity component
- \(V \) Dimensionless transverse velocity, \(v/u_0 \)
- \(x \) Axial coordinate (measured from the channel entrance)
- \(X \) Dimensionless axial coordinate in Cartesian, \(x / (b \ \text{Re}) \)
- \(y \) Transverse coordinate of the vertical channel between parallel plates
- \(\gamma \) Dimensionless transverse coordinate, \(y/b \)
- \(\theta \) Dimensionless temperature
- \(\rho \) Density of the fluid
- \(\rho_0 \) Density of the fluid at the channel entrance
- \(\mu \) Dynamic viscosity of the fluid
- \(\mu_e \) Magnetic Permeability
- \(\sigma \) Electrical Conductivity
- \(\nu \) Kinematic viscosity of the fluid, \(\mu/\rho \)
- \(\beta \) Volumetric coefficient of thermal expansion

3. FORMULATION OF THE PROBLEM

We consider a steady developed laminar mixed convection flow between two vertical channels. The vertical plates are separated by a distance ‘b’. The Cartesian coordinate system is chosen such that the x-axis is in the vertical direction that is parallel to the flow direction and the gravitational force ‘g’ always acting downwards independent of flow direction. The y-axis is orthogonal to the channel walls, and the origin of the axes is such that the positions of the channel walls are \(y = 0 \) and \(y = b \). One wall is maintained at constant heat flux and the other is at isothermal condition. The fluid properties are assumed to be constant except for the variation of density in the buoyancy term of the momentum equation. A uniform transfer’s magnetic field of strength \(H_o \) is applied perpendicular to the walls. The geometry is illustrated in Figure 1.

The governing equations for the steady viscous flow of an electrically conducting fluid in the presence of external magnetic field with the following assumptions are made:

(i) The flow is steady, viscous, incompressible and developed.
(ii) The flow is assumed to be two-dimensional steady, and the fluid properties are constant except for the variation of density in the buoyancy term of the momentum equation.
(iii) The electric field \(\vec{E} \) and induced magnetic field are neglected [19, 21]
(iv) Energy dissipation is neglected.

After applying the above assumptions the boundary layer equations appropriate for this problem are

Continuity Equation

\[
\frac{\partial U}{\partial X} + \frac{\partial V}{\partial Y} = 0
\]
Finite Difference Analysis of MHD Laminar Mixed Convection with Vertical Channel in Downflow

X – Momentum Equation

\[U \frac{\partial U}{\partial X} + V \frac{\partial V}{\partial Y} = - \frac{dP}{dX} - \frac{Gr}{Re} \theta + \frac{\partial^2 U}{\partial Y^2} - M^2 U \]

(2)

Energy Equation

\[U \frac{\partial \theta}{\partial X} + V \frac{\partial \theta}{\partial Y} = \frac{1}{Pr} \frac{\partial^2 \theta}{\partial Y^2} \]

(3)

Where \(M^2 = \sigma \mu^2 e H_n^2 b^2 / \mu \)

The form of continuity equation can be written in integral form as

\[\int_0^1 U \, dY = 1 \]

(4)

The boundary conditions are

Entrance conditions

At \(X = 0, 0 < Y < 1 : U = 1, V = 0, \theta = 0, P = 0 \)

(5a)

No slip conditions

At \(X > 0, Y = 0 : U = 0, V = 0 \)

At \(X > 0, Y = 1 : U = 0, V = 0 \)

(5b)

Thermal boundary conditions

At \(X > 0, Y = 0 : \left(\frac{\partial \theta}{\partial Y} \right)_{Y=0} = -1 \)

(5c)

At \(X > 0, Y = 1 : \theta = 0 \)

In the above, dimensionless parameters have been defined as:

\[U = u / u_0, \quad V = vb / u, \quad X = x / (b \, Re), \quad Y = y / b \]

\[P = (p - p_0) / \rho \, u_0^2, \quad Pr = \mu \, C_p / k, \quad Re = (b \, u_0 / u) \]

\[Gr = g \beta (T_1 - T_0) b^3 / \upsilon^2, \quad \theta = (T - T_0) / (T_1 - T_0) \]

(6)

The systems of non-linear equations (1) to (3) are solved by a numerical method based on finite difference approximations. An implicit difference technique is employed whereby the differential equations are transformed into a set of simultaneous linear algebraic equations.

4. NUMERICAL SOLUTION

The solution of the governing equations for developing flow is discussed in this section. Considering the finite difference grid net work of figure 2, equations (2) and (3) are replaced by the following difference equations which were also used in \[4\]
Numerical Representation of the Integral Continuity Equation

The integral continuity equation can be represented by the employing a trapezoidal rule of numerical integration and is as follows:

\[
\sum_{j=1}^{n} U(i + 1, j) + 0.5\left(U(i + 1, 0) + U(i + 1, n + 1)\right) \Delta Y = 1
\]

(9)

However, from the no slip boundary conditions

\[U(i+1,0) = U(i+1, n+1) = 0\]

Therefore, the integral equation reduces to:

\[
\sum_{j=1}^{n} U(i + 1, j) \Delta Y = 1
\]

(10)

A set of finite-difference equations written about each mesh point in a column for the equation (7) as shown:

\[
\begin{align*}
\beta_i U(i+1,1) + \gamma_i U(i+1,2) + \xi P(i+1) - \frac{Gr}{Re} \theta(i+1,1) &= \phi_i \\
\alpha_i U(i+1,1) + \beta_i U(i+1,2) + \gamma_i U(i+1,3) + \xi P(i+1) - \frac{Gr}{Re} \theta(i+1,2) &= \phi_i \\
&\vdots \\
\alpha_n U(i+1,n-1) + \beta_n U(i+1,n) + \xi P(i+1) - \frac{Gr}{Re} \theta(i+1,n) &= \phi_n
\end{align*}
\]

where

\[
\begin{align*}
\alpha_i &= \frac{1}{(\Delta Y)^2} + \frac{V(i,j)}{2\Delta Y}, \quad \beta_i = \left[\frac{2}{(\Delta Y)^2} + \frac{U(i,j)}{\Delta X} - M^2\right] \frac{1}{\Delta Y} \\
\gamma_i &= \frac{1}{(\Delta Y)^2} - \frac{V(i,j)}{2\Delta Y}, \quad \xi = \frac{-1}{\Delta X} \phi_i = \left[\frac{P(i) + U^2(i,j)}{\Delta X}\right] \frac{1}{\Delta Y}
\end{align*}
\]

for \(k = 1, 2, \ldots, n\)

The numerical solution of the equations is obtained by first selecting the parameter that are involved such as Gr/Re and Pr. Then by means of a marching procedure the variables \(U, V, \theta\) and \(P\) for each row beginning at row \((i+1) = 2\) are obtained using the values at the previous row ‘i’. Thus, by applying equations (7), (8) and (9) to the points 1, 2, ..., \(n\) on row \(i\), \(2n+2\) algebraic equations with the \(2n+2\) unknowns \(U(i+1, 1), U(i+1, 2), \ldots, U(i+1, n), P(i+1), q(i+1, 1), q(i+1, 2), \ldots, \theta(i+1, n)\) are obtained. This system of equations is then solved by Gauss – Jordan elimination method. Equations (10) are then used to calculate \(V(i+1, 1), V(i+1, 2), \ldots, V(i+1, n)\).

5. RESULTS AND DISCUSSION

The numerical solution of the equation is obtained first selecting the parameters that are involved such as Gr/Re, Pr and \(M\). For fixed \(Pr = 0.7\) and different values of \(M\) and Ge/Re, the velocity profiles are shown in figures 3 to 6 and the temperature profiles are shown in figures 7 to 9.

Figures 3 to 6 it can be observed that the fluid decelerates near two walls of the channel and accelerates in the co-region as a result of the continuity principle. However the velocity profile recovers and attains it asymptotic fully developed parabolic profile. It is observed that velocity decreases with increasing magnetic field parameter. A skew-ness in the velocity profiles are appear the fluid moves towards the hot wall.

Figures 7 to 9 show how the temperature profiles are affected by constant heating of the wall along the axial direction between the vertical parallel plates. The temperature decreases with increasing buoyancy parameter for fixed magnetic field parameter. For fixed
buoyancy parameter the temperature decreases with increasing X value.

The development of pressure profiles are shown in figure 10 for depict the various pressure along the axial direction for different buoyancy parameter and magnetic field parameter. These figures show how the two hydrodynamic parameters are developing downstream of the channel at different heating rates represented buoyancy parameter.
Figure 5(a): Velocity profile for fixed \(M=0 \) and \(Gr/Re=200 \)

Figure 5(b): Velocity profile for fixed \(M=1 \) and \(Gr/Re=200 \)

Figure 5(c): Velocity profile for fixed \(M=0 \) and \(Y=0.5 \)

Figure 5(d): Velocity profile for fixed \(M=0 \) and \(Y=0.5 \)

Figure 6(a): Velocity profile for fixed \(M=1 \) and \(Y=0.5 \)

Figure 6(b): Velocity profile for fixed \(M=1 \) and \(Y=0.5 \)

Figure 7(a): Temperature profile for fixed \(M=0 \) and \(X=0.04 \)

Figure 7(b): Temperature profile for fixed \(M=1 \) and \(X=0.04 \)
Finite Different Analysis of MHD Laminar Mixed Convection with Vertical Channel in Downflow

Figure 7(b): Temperature profile for fixed $M=1$ and $X=0.04$

Figure 8(a): Temperature profile for fixed $M=0$ and $Gr/Re=90$

Figure 8(b): Temperature profile for fixed $M=0$ and $Gr/Re=150$

Figure 8(c): Temperature profile for fixed $M=5$ and $Gr/Re=90$

Figure 8(d): Temperature profile for fixed $M=5$ and $Gr/Re=150$

Figure 9(a): Temperature profile for fixed $M=0$ and $Gr/Re=200$

Figure 9(b): Temperature profile for fixed $M=1$ and $Gr/Re=200$

Figure 9(c): Temperature profile for fixed $M=5$ and $Gr/Re=200$

Figure 10(a): Pressure profile for different Gr/Re and fixed $M=0$

Figure 10(b): Pressure profile for different Gr/Re and fixed $M=1$

Figure 10(c): Pressure profile for different Gr/Re and fixed $M=5$
References

